If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0=x^2+16x-144
We move all terms to the left:
0-(x^2+16x-144)=0
We add all the numbers together, and all the variables
-(x^2+16x-144)=0
We get rid of parentheses
-x^2-16x+144=0
We add all the numbers together, and all the variables
-1x^2-16x+144=0
a = -1; b = -16; c = +144;
Δ = b2-4ac
Δ = -162-4·(-1)·144
Δ = 832
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{832}=\sqrt{64*13}=\sqrt{64}*\sqrt{13}=8\sqrt{13}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-8\sqrt{13}}{2*-1}=\frac{16-8\sqrt{13}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+8\sqrt{13}}{2*-1}=\frac{16+8\sqrt{13}}{-2} $
| 7^(3x+5)=9 | | 5x-3=9x-12 | | 3m-3=20-2m | | 7^3x+5=9 | | 16-8y+5y=21 | | -12.5-10x=2.5x-12.5 | | j+j-j=13 | | 5x-3=9-12 | | 14h+11h-2h=13 | | x+2x+x+2x-3x=12 | | (2x+3/15)=9/10 | | 9c-7c+13c-18c=6 | | 8=2^3x | | 2g-12g+6g=16 | | x/0.4=19/9/19/6 | | 4a+3a-3a-a-2a=3 | | 10w-8w+-w+-20-w=20 | | 100x/49x=0 | | 7z-16z-9z=-18 | | 2y−3=41 | | 100x=49x | | 4y-3y+2y+y=20 | | 9+4n=1+2n-8 | | 17t+3t-13t+2t=18 | | 8k+k-8k+k=18 | | 11x+30=2x+201 | | 6x^2-4x-222=0 | | 5h+h+4h-10h+2h=12 | | 6(4w+6)/5=3 | | 18x-14x-5=55 | | k+6k+3k=10 | | 11/6x+19/6x=32 |